量子计算有望加快科学和工程中的一些最具挑战性问题。已经提出了量子算法,显示了从化学到物流优化的应用中的理论优势。科学和工程中出现的许多问题可以作为一组微分方程重写。用于求解微分方程的量子算法已经示出了容错量计算制度中的可提供的优势,其中深宽的量子电路可用于求解局部微分方程(PDES)的大型线性系统。最近,提出了求解非线性PDE的变分方法也具有近术语量子器件。最有前途的一般方法之一是基于近期科学机器学习领域的发展来解决PDE。我们将近期量子计算机的适用性扩展到更一般的科学机器学习任务,包括从测量数据集发现微分方程。我们使用可分辨率量子电路(DQC)来解决由操作员库参数化的等式,并在数据和方程的组合上执行回归。我们的结果显示了普通模型发现(QMOD)的有希望的路径,在经典和量子机器学习方法之间的界面上。我们在不同系统上展示了成功的参数推断和方程发现,包括二阶,常微分方程和非线性部分微分方程。
translated by 谷歌翻译
Privacy of machine learning models is one of the remaining challenges that hinder the broad adoption of Artificial Intelligent (AI). This paper considers this problem in the context of image datasets containing faces. Anonymization of such datasets is becoming increasingly important due to their central role in the training of autonomous cars, for example, and the vast amount of data generated by surveillance systems. While most prior work de-identifies facial images by modifying identity features in pixel space, we instead project the image onto the latent space of a Generative Adversarial Network (GAN) model, find the features that provide the biggest identity disentanglement, and then manipulate these features in latent space, pixel space, or both. The main contribution of the paper is the design of a feature-preserving anonymization framework, StyleID, which protects the individuals' identity, while preserving as many characteristics of the original faces in the image dataset as possible. As part of the contribution, we present a novel disentanglement metric, three complementing disentanglement methods, and new insights into identity disentanglement. StyleID provides tunable privacy, has low computational complexity, and is shown to outperform current state-of-the-art solutions.
translated by 谷歌翻译
Data-centric artificial intelligence (data-centric AI) represents an emerging paradigm emphasizing that the systematic design and engineering of data is essential for building effective and efficient AI-based systems. The objective of this article is to introduce practitioners and researchers from the field of Information Systems (IS) to data-centric AI. We define relevant terms, provide key characteristics to contrast the data-centric paradigm to the model-centric one, and introduce a framework for data-centric AI. We distinguish data-centric AI from related concepts and discuss its longer-term implications for the IS community.
translated by 谷歌翻译
This report summarizes the 3rd International Verification of Neural Networks Competition (VNN-COMP 2022), held as a part of the 5th Workshop on Formal Methods for ML-Enabled Autonomous Systems (FoMLAS), which was collocated with the 34th International Conference on Computer-Aided Verification (CAV). VNN-COMP is held annually to facilitate the fair and objective comparison of state-of-the-art neural network verification tools, encourage the standardization of tool interfaces, and bring together the neural network verification community. To this end, standardized formats for networks (ONNX) and specification (VNN-LIB) were defined, tools were evaluated on equal-cost hardware (using an automatic evaluation pipeline based on AWS instances), and tool parameters were chosen by the participants before the final test sets were made public. In the 2022 iteration, 11 teams participated on a diverse set of 12 scored benchmarks. This report summarizes the rules, benchmarks, participating tools, results, and lessons learned from this iteration of this competition.
translated by 谷歌翻译
The BLOOM model is a large open-source multilingual language model capable of zero-shot learning, but its pretraining was limited to 46 languages. To improve its zero-shot performance on unseen languages, it is desirable to adapt BLOOM, but previous works have only explored adapting small language models. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at \url{https://github.com/bigscience-workshop/multilingual-modeling/}.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The text-to-image model Stable Diffusion has recently become very popular. Only weeks after its open source release, millions are experimenting with image generation. This is due to its ease of use, since all it takes is a brief description of the desired image to "prompt" the generative model. Rarely do the images generated for a new prompt immediately meet the user's expectations. Usually, an iterative refinement of the prompt ("prompt engineering") is necessary for satisfying images. As a new perspective, we recast image prompt engineering as interactive image retrieval - on an "infinite index". Thereby, a prompt corresponds to a query and prompt engineering to query refinement. Selected image-prompt pairs allow direct relevance feedback, as the model can modify an image for the refined prompt. This is a form of one-sided interactive retrieval, where the initiative is on the user side, whereas the server side remains stateless. In light of an extensive literature review, we develop these parallels in detail and apply the findings to a case study of a creative search task on such a model. We note that the uncertainty in searching an infinite index is virtually never-ending. We also discuss future research opportunities related to retrieval models specialized for generative models and interactive generative image retrieval. The application of IR technology, such as query reformulation and relevance feedback, will contribute to improved workflows when using generative models, while the notion of an infinite index raises new challenges in IR research.
translated by 谷歌翻译
SchNetPack is a versatile neural networks toolbox that addresses both the requirements of method development and application of atomistic machine learning. Version 2.0 comes with an improved data pipeline, modules for equivariant neural networks as well as a PyTorch implementation of molecular dynamics. An optional integration with PyTorch Lightning and the Hydra configuration framework powers a flexible command-line interface. This makes SchNetPack 2.0 easily extendable with custom code and ready for complex training task such as generation of 3d molecular structures.
translated by 谷歌翻译
Many dynamical systems exhibit latent states with intrinsic orderings such as "ally", "neutral" and "enemy" relationships in international relations. Such latent states are evidenced through entities' cooperative versus conflictual interactions which are similarly ordered. Models of such systems often involve state-to-action emission and state-to-state transition matrices. It is common practice to assume that the rows of these stochastic matrices are independently sampled from a Dirichlet distribution. However, this assumption discards ordinal information and treats states and actions falsely as order-invariant categoricals, which hinders interpretation and evaluation. To address this problem, we propose the Ordered Matrix Dirichlet (OMD): rows are sampled conditionally dependent such that probability mass is shifted to the right of the matrix as we move down rows. This results in a well-ordered mapping between latent states and observed action types. We evaluate the OMD in two settings: a Hidden Markov Model and a novel Bayesian Dynamic Poisson Tucker Model tailored to political event data. Models built on the OMD recover interpretable latent states and show superior forecasting performance in few-shot settings. We detail the wide applicability of the OMD to other domains where models with Dirichlet-sampled matrices are popular (e.g. topic modeling) and publish user-friendly code.
translated by 谷歌翻译
Physics-informed neural networks (PINNs) constitute a flexible approach to both finding solutions and identifying parameters of partial differential equations. Most works on the topic assume noiseless data, or data contaminated by weak Gaussian noise. We show that the standard PINN framework breaks down in case of non-Gaussian noise. We give a way of resolving this fundamental issue and we propose to jointly train an energy-based model (EBM) to learn the correct noise distribution. We illustrate the improved performance of our approach using multiple examples.
translated by 谷歌翻译